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Learning about knowledge: A complex network approach
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An approach to modeling knowledge acquisition in terms of walks along complex networks is described.
Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as
edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case
implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The
process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single
agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks—i.e.,
networks composed of successive interconnected layers—are related to compositions of the prerequisite rela-
tionships between the nodes. In order to avoid deadlocks—i.e., unreachable nodes—the subnetwork in each
layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks
are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes
after each movement. The Barabdsi-Albert and random models are considered for the layer and interconnecting
subnetworks. Although all subnetworks in each realization have the same number of nodes, several intercon-
nectivities, defined by the average node degree of the interconnection networks, have been considered. Two
visiting strategies are investigated: random choice among the existing edges and preferential choice to so far
untracked edges. A series of interesting results are obtained, including the identification of a series of plateaus
of knowledge stagnation in the case of the preferential movement strategy in the presence of conditional edges.
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I. INTRODUCTION

Science is the art of building good models of nature, in-
cluding science itself. This is the subject of the present
article—i.e., to reexamine the problem of modeling how
knowledge is represented and acquired in the light of com-
plex network research.

Modeling involves representations of the phenomenon of
interest as well as the dynamics unfolding in such represen-
tations in a way which should be systematically consistent
with repetitive confrontation with experimental data. Be-
cause of their generality, complex networks [1-3] provide a
natural and powerful resource for representing structures of
knowledge, where facts are expressed as nodes and relations
between facts are indicated by edges. Such an approach al-
lows the process of knowledge acquisition to be modeled in
terms of the number of nodes (or edges) visited during walks
through the knowledge network representation. The present
work describes a simple approach to knowledge acquisition
based on complex networks and single-agent random walks.

The plan of the article is as follows. After revising the
main related works, focusing on knowledge representation
and random walks in scale-free networks, each of the hy-
potheses adopted in our model is justified and discussed.
Among other issues, it is shown that hierarchical networks
are related to compositions of the prerequisites implied by
the conditional links. The absence of deadlocks (in the sense
of node unreachability) in conditional transitions is avoided
by providing that the networks at each layer correspond to a
connected component (i.e., any node in a layer can be
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reached through paths from any other nodes in that same
network). Hierarchical complex networks (e.g., [4,5]) in-
clude a series of layers, each containing a subnetwork, which
are interconnected through subnetworks. In the proposed
model, conditional links are restricted to those connections
between successive layers. Two types of random walks are
considered, involving random transitions as well as transi-
tions favoring new links. The simulations and respectively
obtained results are presented and discussed next, followed
by the development of an analytical model of plateau forma-
tion. The article concludes by presenting several perspectives
for further developments.

II. BRIEF REVIEW OF RELATED CONCEPTS
AND DEVELOPMENTS

The subject of knowledge representation provides one of
the main issues in artificial intelligence (e.g., [6—8]). Several
discrete structures, including graphs and trees, have been
considered for the representation of knowledge. Of particular
interest are semantic networks, which code each concept as a
node and several relationships between such elements (e.g.,
proximity, precedence, relative position, etc.) are encoded as
edge labels. However, such structures are mainly considered
as a reference for inferences during pattern analysis, not as a
substrate over which to perform walks or explorations. The
possibility to connect nodes through logical expressions as-
sociated with nodes has provided one of the main features of
random Boolean networks [9,10]. These expressions have
been used mainly to combine local states of the nodes, not to
control random walks. The possibility to associate control on
the flow between nodes in graphs has been adopted in Petri

*FAX: 455 16 3371 3616. Electronic  address: nets (e.g., [11]), which have been used mainly for simulating
luciano@if.sc.usp.br computing and logical circuits. The subject of random walks
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FIG. 1. Types of relationships between knowledge subsets (i.e.,
nodes): equivalence (a), implication (b), hybrid relationship involv-
ing equivalence and implication (c), multiple implication (d), and
alternative implications (e).

itself corresponds to a well-developed and important area in
statistical mechanics (e.g., [12]). The analysis of random
walks in scale-free networks has been addressed by Tadic in
[13,14] regarding a special type of network aimed at simu-
lating the Web and by Bollt and Avraham [15] and Noh and
Rieger [16] considering recursive and hierarchical scale-free
networks, the latter being concerned with the deterministic
type of hierarchical network proposed in [17]. Random hier-
archical networks similar to those considered in the present
work have been introduced in [4,5].

III. HYPOTHESES

Representability of knowledge as a network. The basic
assumption underlying the present work is that knowledge
can be represented as a complex network. First, it is under-
stood that knowledge can be partitioned into chunks which
are henceforth represented as network nodes, while relations
between such subsets are represented as edges. Two types of
edge transitions are considered in this work: free and condi-
tional. In the first case, one is allowed to move freely from a
node to the neighboring node and to come back. The latter
type of transition requires the moving agent to have passed
first along a set of nodes which represent the condition for
the movement. The process of learning can then be modeled
in terms of the number of nodes (or edges) during walks
proceeding along the respective knowledge network.

Figure 1(a) illustrates a free transition between two sub-
sets a and b of knowledge, while the example in Fig. 1(b)
expresses the simplest conditional case where the moving
agent can go from b to a, but not from a to b, unless it has
already made at least one move from b to a. It is also pos-
sible to have hybrid situations such as those depicted in Fig.
1(c), where a can be reached from b or c, but only ¢ can be
reached from a. In order to allow the representation of mul-
tiple conditions (i.e., the fact that a can only be reached after
visiting b;,b,,...,by, A being a positive integer) we intro-
duce the concept of a token controlled network. This mul-
tiple conditional case is illustrated in Fig. 1(d). Here, the
subset of knowledge, a, can only be reached after visiting b
and ¢ (in any order). In other words, it is as if the agent
would be collecting a token from each of the required nodes,
which it keeps henceforth as keys, allowing them to proceed
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FIG. 2. The indiscriminate use of multiple conditional implica-
tions quickly leads to deadlocks such as that illustrated here. The
subset of knowledge in node k can never be reached by an agent
starting at i or j, as there is no connection between these two nodes.

through the respective conditional nodes. In the present
work, it is assumed that all conditional nodes—i.e., those
having tokens required for movement to a node n—are con-
nected to node n through directed edges. It is also possible to
have alternative multiple conditions, as illustrated in Fig.
1(e), where the labels associated with the edges identify the
respective conditional structures. In this case, a can be
reached if and only if both b and ¢ were visited before or
after visiting d and e. The case in which a node a can be
accessed after visiting b or c is represented by two undi-
rected edges, without associated labels, from those nodes to
a. In brief, the free edges are represented by undirected
edges and the conditional by directed arrows with associated
identifying labels. Alternative multiple conditions are not
considered in the present work in order to limit the complex-
ity and number of parameters in the experimental and ana-
Iytical characterization of the dynamics of knowledge acqui-
sition.

Regarding the movement of agents along such networks
as they integrate the knowledge available from the nodes, it
is natural that a free transition can be tracked in any direc-
tion. However, a conditional edge from b and ¢ to a is con-
sidered to be direction restrictive only until a is reached for
the first time (after visiting b and ¢), becoming a free edge
henceforth. This type of dynamics is implemented in order to
express the fact that once knowledge about a, b, and c is
achieved—i.e., the conditional transition is mastered—it be-
comes possible to reach any of the conditions from node a.

Hierarchical knowledge networks. The indiscriminate in-
corporation of the multiple conditions into a network can
easily lead to deadlocks such as that illustrated in Fig. 2. This
deadlock is a direct consequence of the fact that there is no
path connecting i and j in the network represented in this
figure. We henceforth assume that the knowledge network is
consistent, in the sense that all nodes should be reachable. In
addition, the several prerequisites between the portions of
knowledge assigned to nodes, starting from an initial set of
nodes (the “assumptions”), can be used to define a hierarchy
along the networks. For instance, some knowledge at node i
may require previous visits to nodes j and k, which we shall
represent as i=P(j,k). The access to k and j may demand
previous visits to nodes m and n and ¢ and r, respectively,
represented by the composition of prerequisites i=P(j,k)
=P(P(m,n),P(q,r)), implying two hierarchies. Therefore, a
network of consistent knowledge can be general and natu-
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FIG. 3. An example of simple hierarchical network.

rally organized as a hierarchy of H layers, with the first layer
corresponding to all nodes which have no prerequisites,
while the remainder of the nodes are partitioned into layers
by the composed prerequisites. Each layer & contains a con-
nected subnetwork (i.e., any node in the subnetwork can be
reached through at least one path from any node) which is
interconnected, via conditional edges, to nodes in layer
h—1.

It is important to note that such an organization of the
knowledge network in terms of conditional edges does not
prevent edges from extending through two or more hierarchi-
cal levels; i.e., a node at hierarchy i could receive an edge
from a node in hierarchy i—2. Such connections, which can
be understood as “bypasses,” are not considered in the
present work. Also worth noticing is the fact that, although
related to previous works such as [4,5], the hierarchical or-
ganization for knowledge representation is self-contained
and follows naturally from knowledge consistence and the
composition of prerequisites between nodes. The total num-
ber of layers is henceforth expressed as H and the number of
nodes in layer & as N(h), while the number of nodes in the
whole hierarchical network is denoted as ().

Figure 3 illustrates a simple hierarchical knowledge net-
work containing three layers. For simplicity’s sake, hybrid
relationships or alternative implications are not considered
henceforth. In addition, all network layers are assumed to be
of the same type [e.g., Erdés-Rényi (ER) or Barabdsi-Albert
(BA)] and have the same number of nodes and average node
degree. The nodes at the highest hierarchy are called assump-
tions and are the place where all the walks start. Note that the
highest hierarchical levels are found at the lowest portion of
Fig. 3.

The set of interconnecting networks is also of uniform
type and has the same number of nodes and edges. In the
current work, these subnetworks can be of random (ER) or
scale-free (BA) types, defining how the subnetwork in layer
h+1 connects to the nodes in layer h. Figure 4 illustrates
how such interconnections are henceforth understood. The
layers h [Fig. 4(a)] and i+ 1 [Fig. 4(c)] are to be connected
through the interconnection subnetwork % in Fig. 4(b). Each
edge (i,/) in the interconnection layer implies that node i in
layer A is connected to node j in layer 4—1 and that node j in
layer h is connected to node i in layer A—1. Note that al-
though a more flexible interconnecting scheme could be
achieved by using directed interconnecting networks, the
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FIG. 4. Two layers (a), (c) and one interconnecting (b) simple
subnetworks and the section of the hierarchical network respec-
tively implemented (d).

present study considers all layer and interconnecting net-
works to be undirected because such a structure favors the
analytical model developed in Sec. VII without loss of gen-
erality except for the respectively implied doubled average
node degree. The connections implemented by the three sub-
networks in Figs. 4(a)-4(c) are illustrated in Fig. 4(d).

IV. COMPUTATIONAL IMPLEMENTATION

Knowledge networks involving the free and conditional
edges described above can be conveniently represented in
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FIG. 5. Example of an extended adjacency matrix K considering
BA layers and random interconnections. The conditional connec-
tions are represented in white and the equivalence edges in gray.

terms of an extended adjacency matrix,' henceforth repre-
sented as K. Each node is labeled by consecutive integer
values 1,2, ...,N. The equivalence between two nodes i and
J is indicated by making K(i,j)=1 and K(j,i)=1. The single
conditional connection from node i to j is represented as
K(i,j)=1 and K(j,i)=—1. Note that such an assignment
implements the adopted strategy that an implication edge can
be backtracked unconditionally. The multiple conditional
transition from iy,i,,...,i, to j is represented as K(i,,j)=1
and K(j,i,)=—1,p=1,2,...,A. Figure 5 illustrates an ex-
tended adjacency matrix K considering BA models for layer
and interconnecting networks.

The moving agent keeps at all times a vector v of visited
nodes and an individual adjacency matrix G, which are con-
tinuously updated after each movement. The agent is allowed
to know about all feasible connections emanating from the
current node i, while the feasibility of a given edge (i,/) is
decided by taking into account its list v of visited nodes.
More specifically, an edge will be feasible and accessible to
the agent in case it has already visited the required nodes and
collected the respective tokens.

The movement strategies described in the two following
subsections have been considered in the reported simula-
tions.

A. Random choice of edges

In this case, the next edge to be taken from the current
node i is drawn with the same probability between all the
feasible connections between i and all other nodes. By fea-
sible connection it is meant either a free edge or a condi-
tional edge for which all conditions have already been met.

B. Preferential choice of edges

Unlike the previous case, the free edges which have not
yet been tracked are considered first, with uniform probabil-

"The term weight matrix has been deliberately avoided here be-
cause the values (labels) in the matrix are more related to the adja-
cency between nodes than to weights.
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ity. In case no such edges exist, the next edge is drawn uni-
formly among the other allowed movements; i.e., free links
which have already been tracked and enabled conditional
links which remain untracked. The exclusion of the un-
tracked conditional links, even if enabled, from the preferen-
tial movements is considered in order to express the fact that
such a kind of knowledge enlargement is more demanding
than exploring first the untracked unconditional connections.

Note that in neither case can the agent use its knowledge
about the status (i.e., already visited or not) of the node to
which the emanating edges lead to. Although more sophisti-
cated moving strategies which make full use of the informa-
tion stored in the partial graph G stored with the agent can be
devised, including the choice of shortest paths to unvisited
edges, they are not pursued further in the present work.

The two strategies above aim to represent, though very
naively and incompletely, two possible ways to acquire
knowledge. In the first case, no distinction is made between
a new or already taken relation. It is as if the researcher (i.e.,
the agent walking through the network) is equally interested
in revising a relationship or seeking for new possible con-
nections. In the second visiting scheme, the researcher is
more actively interested in exploring new relationships, re-
sorting to already tracked connections or enabled conditional
links only in case no untracked free links are available. In-
tuitively, the second strategy would seem to be more effec-
tive in finding new knowledge by covering the edges more
effectively.

V. SIMULATIONS

For simplicity’s sake, all simulations reported in this work
are restricted to hierarchical networks with H=5 network
layers, with all layer and interconnecting subnetworks hav-
ing N(h)=N=20 nodes, implying a total of {1=100 nodes for
all layer subnetworks (larger networks involve much longer
execution times). Random and Barabdsi-Albert models are
considered for layers and interconnections. The latter are de-
fined by the number of edges, m, of each new added node,
starting with m0 nodes. For each such BA network, an
“equivalent” random network—in the sense of having the
same average degree (k) and number of edges, Ny—is ob-
tained. Since the average degree of a BA network with m
edges per node is known to be

(k) =2m, (1)

the Poisson rate of the equivalent random (Erdds-Rényi) net-
work with the same number of N nodes and same average
degree (k) can be verified to be given as

v,=2m/(N-1). (2)

The above result follows from the fact that in an Erdds-
Rényi network we have y=(k)/(N—1). The number of edges
in any of the BA or random networks can be calculated as

N = N/2(k). (3)

Therefore, in this work the values of m are used to define the
connectivity of the BA models and then of the respective
random counterparts.
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TABLE 1. Values of m for the BA models and the respective
total number of edges, Ng, average degree (k), and equivalent Pois-
son rate vy, expected for each subnetwork (layer or interconnecting)
with N=20 nodes.

m Ng (k) Ye
1 20 2 0.105
2 40 4 0.210
3 60 6 0.316
4 80 8 0.421
5 100 10 0.526
6 120 12 0.631
7 140 14 0.737
8 160 16 0.842
9 180 18 0.947
10 200 20 1.05

Three configurations have been chosen for the BA layer
models, m=1, 5, and 10, while eight configurations are con-
sidered for the interconnecting networks, m=1,2,...,8.
Table I shows the expected values of the number of edges,
Ny, average degree (k), and Poisson rate vy, for values of m
ranging from 1 to 10.

The following configurations were addressed in the re-
ported simulations: (i) all layers and interconnecting subnet-
works are BA, (ii) all layers subnetworks are random and all
interconnecting networks are BA, (iii) all layers subnetworks
are BA and all interconnecting subnetworks are random, and
(iv) all layers and interconnecting subnetworks are random.

Each of the above configurations was investigated while
considering two visiting strategies: (a) allowed edges are
chosen randomly, and (b) if available, untracked allowed
edges are selected randomly; otherwise, allowed tracked
edges are selected randomly. In order to assess the effect of
the conditional edges between successive layers, counter-
parts of each considered configuration interconnected by un-
conditional networks have also been simulated and had their
performance quantified. Although several alternative or
complementary performance indices could have been consid-
ered, for simplicity’s sake our attention is restricted to the
percentage P of visited nodes and percentage E of visited
edges at time instant . The speed of knowledge acquisition
can be estimated by taking the time derivative of this

quantity—i.e., P. A total of 100 realizations involving N,
=2400 time steps (corresponding to each movement along
the walk) have been performed.

Figure 6(a) shows the learning curves obtained for P(r)
considering ER layer networks defined by m=5 and five ER
interconnecting layers with m=1,2,...,8 for the presence of
conditional connections between layers and consideration of
the random choice of movement. The title of each graph is
henceforth organized as (layer, interconn, movement, condi-
tionality), where layer and interconn indicate the model as-
sumed for the layer and interconnecting networks, movement
identifies the moving agent strategy (random or preferential
for new edges), and conditionality indicates the type of in-
terconnecting edges (conditional or free and unconditional).

PHYSICAL REVIEW E 74, 026103 (2006)

Figure 7 illustrates the fact that almost identical results
were obtained considering different combinations of layer
and interconnection network models. Because a similar ten-
dency was verified for all cases considered in this work, the
results are henceforth presented only for the configurations
involving ER layers and ER interconnections.

Analogous results obtained for the preferential move-
ments and conditional connections, random movements and
unconditional connections, and preferential movements and
unconditional connections are given in Figs. 6(b)-6(d), re-
spectively. In all the remaining figures in this article, the
legend bar indicates the density of the interconnections. The
values in these legends correspond to the parameter m
adopted for the BA model, therefore defining the density of
interconnections for this model and also for the equivalent
random counterpart [see Eq. (2)].

Models considering different connectivities for the layer
networks—namely, m=1 and m=10—have also been simu-
lated and investigated. The percentage of visited nodes P(r)
obtained for the preferential choice and conditional intercon-
nections situation is shown in Figs. 6(e) and 6(f), respec-
tively.

The percentages of visited edges, E(f), at each time in-
stant are given in Figs. 6(g) (random movements, conditional
interconnections), 6(h) (random movements, unconditional
interconnections), 6(i) (preferential movements, conditional
interconnections), and 6(j) (preferential movements, uncon-
ditional interconnections).

VI. DISCUSSION

The results presented in the previous section are discussed
in the following with respect to the two main performance
situations considered in this work: number of visited nodes
and edges.

A. Knowledge in terms of visited nodes

Effects of conditional interconnections. Compared to un-
conditional interconnections, the case of conditional inter-
connections tends to substantially reduce the knowledge ac-
quisition speed. This was expected, indeed, because the
conditional interconnections imply the moving agent to stay
longer wandering at previous layer networks in order to col-
lect the tokens necessary to proceed into new layers.

Effects of the network models. As can be easily inferred
by comparing the left and right columns of Fig. 7, intercon-
nections through BA subnetworks have about the same effect
as random networks on the knowledge acquisition in all
cases. This is mainly a consequence of the imposed similar
connectivity of the BA and random counterpart models used
for the interconnecting subnetworks. Similarly, the use of BA
or random models for the layer networks also led to minimal
effect on the knowledge acquisition dynamics. In brief, the
type of network model, BA or random, had little effect on the
overall knowledge acquisition efficiency.

Effects of the density of interconnections. Denser intercon-
necting subnetworks tend to decrease the knowledge acqui-
sition speed in the case of conditional interconnections, hav-
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ing little effect for unconditional interconnections [e.g., the
learning curves are nearly identical whatever the intercon-
necting density in Figs. 6(b) and 6(d)]. Such a behavior is
explained because a larger number of conditional intercon-
nections implies the moving agent to collect more tokens in
the previous layers before proceeding to further layers.
Presence of plateaus. The preferential movement strategy

defined for conditional interconnections has implied a series
of plateaus of knowledge acquisition along the learning
curves. The learning curves in Fig. 6(c) are characterized by
being preceded by a quick acquisition stage, followed by the
respective plateau, whose width tends to become larger as
time goes by. These plateaus indicate a phase of knowledge
stagnation, corresponding to the state of dynamics of the
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FIG. 7. The percentage of visited nodes, P, in terms of the time 7 for the configurations involving BA layer and BA interconnection (a),
BA layer and ER interconnection (b), ER layer and BA interconnection (c), and ER layer and ER interconnection (d) considering a random
choice of edges and conditional interconnections. The networks layers assumed m=5. Almost identical results are obtained in all four cases.

The legend indicates the density of interconnections in terms of m.

system where the walks proceed predominantly over edges
in the previous layers, while the conditional links leading to
the subsequent layers are not yet feasible. In this respect, it is
possible to draw a naive analogy with a particle moving
along a series of chambers limited by successive compart-
ments which are progressively removed. Congruently, the
plateaus tend to become larger along time because the walks
have each time more alternatives of random movement
among the feasible edges. This possibility is corroborated by
the fact that the plateaus become more discernible for large
interconnectivities (i.e., large values of m adopted for the
interconnections in BA and random counterparts), which im-
ply more edges between subsequent layers. The (possibly
counterintuitive) tendency of the preferential movements to
reduce the knowledge acquisition rate when compared to the
random strategy can be explained by the fact that in the
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sented in terms of the respective average. Note also the first
short plateau with height 0.2, which was not visible in the

FIG. 8. Visualization of 100
different trajectories obtained for
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FIG. 9. The number of layers
occupied by the moving agent in
terms of the random walk steps ¢
for specific realizations consider-

t

2800 3200

5 layer

1
(b) 400 800 1200 1600 2000 2400

previous figures because of the smaller resolution of those
pictures.

Additional insight into the evolution of the ratio of visited
nodes in the presence of conditional edges can be obtained
by considering the number of layers visited by the agent
along the random walk steps. Such a curve is illustrated in
Fig. 9 for specific realizations considering random (a) and
preferential (b) agent movements. It is clear from this figure
that the preferential random walk implies that the agent ex-
plores most of the nodes in the current layer, while seeking
for free edges, before proceeding to explore the subsequent
layers, therefore implying the formation of plateaus.

Layer networks with other connectivities. In order to in-
vestigate the effect of the connectivity of the layer networks
on the overall knowledge acquisition dynamics, the above
simulations were performed also for m=1 and 10 (all other
situations discussed in this subsection refer to layer networks
with m=35). It is clear from Figs. 6(e) and 6(f) that the larger
number of edges in each layer implied by m=10 tends to
substantially slow down the node coverage and to yield more
marked plateaus.

The overall fastest knowledge acquisition was observed
for the cases involving free transitions, with some speed-up
verified for the preferential movement strategy [i.e., Fig.

6(d)].

B. Knowledge in terms of visited edges

The dynamics of knowledge acquisition can also be quan-
tified in terms of the percentage E(r) of visited edges, which
provides additional insights into the considered models and
strategies. These results are shown in Figs. 6(g)-6(j). The
curves obtained for random movements [i.e., Figs. 6(g) and
6(h)] are quite similar, indicating that the presence of condi-
tional edges has little effect on the edge coverage under the
random movement strategy. The results obtained for prefer-
ential movements and conditional transitions [i.e., Fig. 6(i)]
indicate that the edges are covered less effectivey than in the
two previous cases, especially for denser interconnections.
The fastest coverage of edges was clearly obtained for pref-
erential movements with free transitions [i.e., Fig. 6()],
which is a direct consequence of the preference for new
edges imposed by that strategy. Such a fast edge coverage is
also accompanied by the fastest node coverage in Fig. 6(d).

ing random (a) and preferential
(b) movements.

t

2800 3200

Also interesting is the fact that, though the edge coverage
obtained for random movements [i.e., Figs. 6(g) and 6(h)]
resulted in being quite similar, the node coverage was veri-
fied to be much faster in the former situation than in the
latter. Actually, the case involving random movements and
conditional transitions is characterized by the fact that most
nodes are covered after approximately 1500 basic time steps
[see Fig. 6(a)] even though only a fraction of the respective
edges have been covered at that time, as indicated by Fig.
6(g).

In order to better understand the preferential dynamics, let
us first consider its initial stages, where the agent starts its
exploration of the first and second layers. Because preference
is given to free untracked edges, the agent tends to remain in
layer 1 until most of its free edges are tracked. At this point,
not only do few free edges remain untracked, but also most
conditional links have been enabled. Therefore, in the pres-
ence of few untracked free edges, the agent considers more
frequently movements going through tracked or enabled con-
ditional edges, the latter leading to higher hierarchies. At
subsequent stages, when the agent is exploring a higher hi-
erarchy, it will tend to go through the free untracked edges,
which now include the conditional edges leading back to
previous layers, proceeding into higher layers only when the
edges within and between the previous layers have been
mostly covered, so that few preferential movements are al-
lowed and the agent now considers more frequently going
through already tracked links on the current or previous lay-
ers or enabled conditional links leading to higher layers.

The lack of plateaus in traditional random walks in the
presence of conditional links can be understood as being a
consequence of the fact that treating free or enabled condi-
tional edges with the same priority, irrespectively of being
tracked or not, allows more frequent explorations of the en-
abled conditional edges leading to higher hierarchies. Note
that even at the earliest stages of the exploration depicted in
Fig. 9(a), the agent manages to get as far as the last layer. In
this way, plateaus of stagnation are completely avoided.
However, it remains an interesting fact that the barriers of
conditional links are overcome with relative ease by the
moving agent.

VII. ANALYTICAL MODEL

The several interesting dynamical features so far identi-
fied through numerical simulations are investigated further,

026103-8
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especially regarding their behavior under scaling of the net-
work sizes and number of layers, in the present section
through a simplified analytical model. Though we limit this
investigation to preferential random walks in the networks,
more specifically the case leading to plateaus, the other situ-
ations considered in this article can be treated similarly.

We start by considering the fact that, at step ¢ of a random
walk preferential to untracked edges, the ratio of visited
nodes P(¢) of a random or BA network with N nodes and free
links has been verified, through extensive simulations, to be
approximated (at least for I0=<N<1000) as

P(H)=1-¢"™. 4)

We shall make a small modification of the way in which
the conditional edges are considered so as to simplify the
analytical characterization of the knowledge acquisition dy-
namics. More specifically, starting at layer #=1, movements
to the subsequent layer #+1=2 will only be allowed after a
ratio P, of visited nodes in /& has been achieved. The differ-
ence between such an assumption and the situations so far
considered in the present article is that in the latter situation
the moving agent is allowed to explore subsequent layers at
any time, provided it holds the respective prerequisites.
However, the above simplification holds particularly well
when the connectivity between subsequent layers is rela-
tively large with respect to the connectivity between the
nodes in each layer, because in such a situation most move-
ments in the subsequent layer will be mostly blocked by the
prerequisites and preference to free untracked edges in the
current and previous layers.

Let (k) be the average degree at each layer and (k;) be the
average degree of the interconnecting layer. At the beginning
of the random walk, the exploration is limited to layer h=1,
so that P, is reached at a critical step ¢, so that P(¢,)=P,
which can be calculated through Eq. (4).

Afterwards, all conditional links at layer 2 are enabled, so
that the exploration of that layer begins. However, as the
interconnecting edges are bidirectional, the agent will now
exchange between layers 1 and 2 until the ratio P, is
achieved for layer 2. The respective occupancy of these two
layers can be approximated in terms of the Markov chain
shown in Fig. 10.

The stochastic matrix S associated with this Markovian
system is immediately obtained as

W 20
B +2k) ©+206
25w W | ®

(k) +2(k;) (k) + 2¢ky)

where the factor of 2 stands for the fact that one undirected
edge in the interconnecting layer implies two conditional
links between layer 1 and 2 (see Fig. 4).

Although the moving agent will soon be spending the
same proportion of time at layer 1 or 2, it is the relative
frequency F of time steps at which the moving agent remains
at or enters into layer 2 that matters for the coverage of the
nodes in this layer and respective acquisition of prerequi-
sites. This frequency is immediately given as being equal to

PHYSICAL REVIEW E 74, 026103 (2006)

ey Eyr2ey (k)
<i(> +2 (1’(1 )

<i(> + 2{1’(g )

FIG. 10. The movement of the agent between subsequent hier-
archical layers can be modeled in terms of Markovian models, as
illustrated for two (a) and three (b) layers. Note that progress to the
subsequent layers is blocked until the critical ratio of visited nodes,
P., is achieved for the last enabled layer.

the relative number of movements through the two edges
leading to node 2. It follows by symmetry that F=0.5, im-
plying the exploration of layer 2 to be effectively performed
at a renormalized P(r) given as

P()=1-¢ 05N, (6)

Note that 7 is relative to each exploration stage, always
starting when the critical ratio of visited nodes is achieved
for the last current layer. After liberating layer 3 for explo-
ration, the Markov model becomes as shown in Fig. 10(b)
and the respective stochastic matrix now reads

(k) 2(k,) 0
(k) + 2k k) + 4k
.| 2k (ky 2k )
TR 20k (k) + Ay Ry + 20k |
2k (k)
() + 4k (k) +2(ky)

Note that all subsequent stochastic matrices will share the
right-hand lower 3 X2 block with the above matrix, from
which a generic probabilistic model can be developed. At a
generic hierarchical level &, these four elements are given as
follows:

2(k:)
Sh-2n-1= m (8)
. ©)

S =,
T () + k)
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2k
Sh—l,h——<k>+2<ki>, (10)
Sh-1=Sp-2.n-1 (11)
(k) (12)

S = 0 + 20k

Because of the inherent symmetry of the transition prob-
abilities in the matrix S, the occupancy p(h) of each state h
can be calculated as

1
2+ (h=2)[1+S(h-1,h)]

forh=1orh=H,

p(h) =
1+S(h-1,h)

2+ (h=2)[1+S(h-1,h)]

otherwise.

(13)

As the relative frequency in which each of these transi-
tions S(a,b) are performed is immediately given as
p(b)S(a,b), we have that the relative frequency of move-
ments F(h) into the last currently enabled layer 4 is therefore
given as

F(h) (14)

__a
T B+ (h-2)y

where

a=p(h=1)S, -1+ p(h)Sp .,
B=2(p(h)S_y +p(h)S), 1),

y=2p(h= 1S5y +ph=1)S)_1 j-y-
By substituting Egs. (8)—(13) into Eq. (14), it follows that

F(h) = ; (15)

B+hC
where

A = (k) + 6¢k)(k;) + 8(ky)?,
B =— 4k)(k) — 16(k;)?,

C = (k)% + 8(k;){k) + 16{k;)>.

The evolution of the ratio of visited nodes can therefore
be estimated by using Egs. (4) (for A=1) and (16) (for A
=2):

P(t)=1— e FWIN, (16)

PHYSICAL REVIEW E 74, 026103 (2006)

This implies the overall evolution to be composed by sub-
sequent time-scaled versions of Eq. (4), given by Eq. (16) in
terms of the value F(h). Consequently, the length of each
stage along the liberation of the layers will be given as

B+hC
L(h)=1/F(h) = 1

(17)

where A, B, and C are constants defined by (k) and (k;). It is
now clear that this length scales proportionally to 4. Equa-
tion (16) also provides the means for analyzing the scaling of
P(r) with N. Because the coefficient ¢ of the exponential in
P(t)—i.e., c=F(h)/N—corresponds to a product between
F(h) and 1/N, the scaling of the subnetworks size from N to
aN will imply ¢=(F(h)/a)N=c/a for all k; i.e., the length of
all stages L(h) will be equal to aL(h). In other words, the
overall shape of the ratio of visited nodes will not change
when N is scaled while all other parameters are kept fixed.
Figure 11 illustrates the evolution of the ratio of visited
nodes in a BA network as estimated by the above model
assuming N=20, (k)=10, (k;)=16, P.=0.9999, and five lay-
ers. Except for the value P, these parameters correspond
precisely to those considered in the evolution shown in Fig.
8. The specific value of P, was chosen so as to obtain a
proper fitting between the experimental data and the theoret-
ical model. A good overall adherence can be observed be-
tween the analytical and respective experimental evolutions
regarding both the lengths and heights of each plateau. Inter-
estingly, the analytical model also captures the fact that pro-
gressively smoother transitions are obtained at higher hierar-
chies. The main difference between these evolutions is
related to the fact that, in the original experiment, the mov-
ing agent was allowed to proceed to subsequent layers more
freely—i.e., before the critical ratio of visited nodes P, had
been reached. Such a dynamics would contribute to smooth-
ing the left-hand side of the evolution curve at each transi-
tion, as is the case in the experimental results in Fig. 8.

VIII. CONCLUDING REMARKS

This article has presented a simple approach to knowledge
acquisition based on a representation of knowledge as a hi-
erarchical complex network [4] and the modeling of the pro-
cess of knowledge acquisition in terms of walks along such
networks. Though simple, the considered models incorporate
the existence of two types of edges (free and conditional),
including multiple conditional transitions where access to
specific nodes is granted only after the agent has visited spe-
cific nodes. This movement strategy represents a possibly
new mechanism for complex network and random walk re-
searches.

LEOOOODOoH
Ohnnanoo

FIG. 11. Analytical evolution
of the ratio of visited nodes for a
random network with N=20, (k)
=10, (k;)=16, P,=0.9999, and
t five layers.
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Two visiting strategies have been considered: at random
and preferential to still untracked free edges. Simulations
considering several densities of connectivity between five
hierarchical layers have been evaluated with respect to con-
ditional interconnecting networks and unconditional counter-
parts and the knowledge acquisition dynamics quantified in
terms of the number of visited nodes and edges as a function
of time (i.e., each basic movement of the agent). A Markov-
ian analytical model of the learning dynamics is developed
for the case of preferential random walks in the presence of
conditional links, which reproduces the plateaus heights and
lengths. This model has allowed a discussion of the scaling
properties of the dynamics with respect to the network size
and number of layers. Among other findings, the lengths of
the plateaus have been verified to be proportional to the
number of already explored layers.

Despite the simplicity of the approach, a series of inter-
esting complex dynamics and effects have been identified
from the learning curves, including the fact that the prefer-
ential movement strategy was slower than the random coun-
terpart for the case of conditional interconnections, as well as
the identification of plateaus of stagnation of learning for the
latter situation.

The reported work has paved the way to several future
works, including the consideration of multiple agents [18],

PHYSICAL REVIEW E 74, 026103 (2006)

which may or may not share information about their indi-
vidual adjacency matrices. Another relevant issue to be in-
corporated into the model is the fact that the transitions from
one node to another—i.e., the inference of some subset of
knowledge from another—may not always take the same
time. It would therefore be interesting to consider diverse
distributions of time and weights along the hierarchical
knowledge networks. Also interesting is the fact that the sug-
gested approach and models provide an interesting frame-
work for investigating data flow architectures (e.g.,[19]).
This type of parallel computing architecture is characterized
by a hierarchical processing flow constrained by depen-
dences between intermediate computing stages, which could
be conveniently modeled by the hierarchical complex net-
works with multiple conditional edges. It would be interest-
ing to consider additional measurements typically used in
random walk investigations, such as return time and correla-
tions.

The author is grateful to Dietrich Stauffer, Osvaldo
Novais de Oliveira, Jr.,, and Gonzalo Travieso for careful
reading and commenting on this article and to FAPESP (pro-
cess 99/12765-2) and CNPq (308231/03-1) for financial sup-
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